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Abstract  

The paper proposes a robust faults detection and forecasting approach for a centrifugal gas compressor 

system, the mechanism of this approach used the Kalman filter to estimate and filtering the unmeasured states 

of the studied system based on signals data of the inputs and the outputs that have been collected 

experimentally on site. The intelligent faults detection expert system is designed based on the interval type-2 

fuzzy logic. The present work is achieved by an important task which is the prediction of the remaining time 

of the system under study to reach the danger and/or the failure stage based on the Auto-regressive Integrated 

Moving Average (ARIMA) model, where the objective within the industrial application is to set the 

maintenance schedules in precisely time. The obtained results prove the performance of the proposed faults 

diagnosis and detection approach which can be used in several heavy industrial systems . 

 

Keywords: Fault detection and diagnosis, Centrifugal gas compressor, Kalman filter, Interval Type-2 fuzzy logic, 

Experimental data, ARIMA 

 

Nomenclature  

AIC Akaike Information Criterion 

ARIMA Auto-regressive Integrated Moving Average 
BCL 505 Barrel, Closed disc counter wheel, Libre vortex 

diffuser, 500 mm wheels diameter with 5 wheels 

ACS Acquisition Control System 
ESRIV Extended Simplified Refined Instrumental Variable 

FDI  Fault Detection and Isolation 

FL Fuzzy Logic Type-1 
FL-2 Fuzzy Logic Type-2 

FPE Final Prediction Error 

GCV Gas Control Valve 

GE General Electric 

HP High Pressure 

IV Instrumental Variable 
LP  Low Pressure 

LNG Liquefied Natural Gas 

LSL Lower Specification Limit 
MIMO Multi Input Multi Output 

OE Output Error 

PLC Programmable Logic Controller 
RMSE Root Mean Square Error 

SISO Single Input Single Output 

SPC Statistical Process Control 
SQC Statistical Quality Control 

SS State Space 

SRIV Simplified Refined Instrumental Variable 
USL Upper Specification Limit 

VAF Variance Accounting For 

Symbols 

1T  Aspiration Temperature [°C] 

1P  Aspiration Pressure [kg/cm2] 

2ˆ2 TT
 Discharge temperature/Observesd discharge 

temperature 

2ˆ2 PP  Discharge pressure/Observesd discharge pressure 

opY
 Optimal output signal 

ET2 Error discharge temperature 
EP2 Error discharge pressure 

A,B,C and D State space matrices 

XX ˆ
 State/Estimated state 

YY ˆ
 Output signal/Filtered output signal 

U
 Control signal 

  ( )kyku */*
 Pre-filtered input/output signals 

respectively 

E Error signal 

R Residual signal 
N Length data 

K Discrete time 

z−1 Delay operator 
I Identity matrix  

Z Zero matrix 

J Cost function 

kPkkPk /1−
 Covariance/Updated covariance 

kY
~

 Measurement residues 

kS
 Innovation covariance 

kK  Optimal Kalman gain 

kQ  Process noise covariance matrix 

kR  Measurement noise covariance 

F1,F2 and F3 Faults 
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S  Standard deviation 

m  Average value 

jF2

~
 Sets of premises 

jG
~

 Sets of consequences 

.col  Transforms a matrix into a column vector 

ˆ Indicates estimated values 

na  The index of matrix polynomial ( )1−zA  

bn  The index of matrix polynomial ( )1−zB  

P The number of the outputs signals 

Greeks 

  Kronecker product 

 ˆ/  Matrix parameters/Estimated matrix parameters 

  Matrix inputs/outputs information 

 

1. INTRODUCTION 
 

In the last few years, the maintenance of 

industrial systems during their operating modes is 

one of the main strategic problems facing the 

industry, from the design of a machine until to its 

exploitation. Therefore, the diagnostic system is 

essential for ensuring the smooth and continuous 

operation of dynamic systems and for increasing 

their performances by guaranteeing better 

reliability. Indeed, the diagnostic system is used to 

provide the control system by the required real data 

of the dynamic system operating status in un-faulty 

(healthy) mode and in faulty mode. On the other 

side, the diagnostic system has to fulfill the 

requirement of robustness to avoid the practical 

cases of non-detection and false alarms, which 

means avoiding the eventual accidental and 

catastrophic situations. The diagnostic systems is 

based mainly on comparing the actual behavior of 

the system with a reference behavior representing 

the healthy operation. This comparison allows to 

detect the behavioral changes that are due to the 

appearance of the faults. 

The FDI diagnosis approaches implemented in 

the industries are generally divided in two main 

classes such as the diagnostic approaches based on 

mathematical model and the diagnostic approaches 

based on data analysis. The FDI mathematical 

model approaches include, the observer’s approach 

[1], the parity-space approach [2], and system 

identification-based approaches [3]. The FDI data 

analysis approaches or called the measurements 

approaches, these approaches insure the detection 

of fault under certain conditions, included the 

artificial intelligence-based model (fuzzy logic, 

neural networks…etc.) [4], statistical approaches 

and FDI approaches based on signal processing [5, 

6]. 

In this sense, several works have been carried 

out in the literature presenting the main challenges 

of the proposed diagnosis approaches in energy 

plants, (gas turbine, gas compressor, centrifugal 

chiller, turbomachinery…etc.), such as fault 

detection and diagnostics tool based on a data fault 

library, application to an automated chiller [7], 

Effect of common faults on the performance of 

different types of vapor compression systems [8], A 

statistical fault detection and diagnosis method for 

centrifugal chillers based on exponentially-

weighted moving average control charts and 

support vector regression [9], the performance 

diagnosis of gas turbine compressors based on 

component map tuning method [10], diagnostics of 

gas turbine for a high bypass ratio military turbofan 

engine based on artificial neural-networks [11], 

Active surge control for variable speed axial 

compressors [12], and fault-diagnoses based on 

evolution strategy (a simple genetic-based 

algorithm and fuzzy approaches) for gas turbo-

compressor systems [13, 14, 15, 16, 17, 18, 19, 20, 

21]. Based on these research works, it is obvious 

that the research on the gas turbine and gas 

compressor systems are actually a very highlighted 

research topic. 

The proposed diagnostic approach presented in 

this paper is applied on the centrifugal gas 

compressor system which is used in many sectors 

and covers a very wide range of industrial 

applications. Indeed, this system is at the heart of 

many industrial sectors, such as the petroleum 

industry, the thermal and the nuclear power 

generation, the aeronautic and the space propulsion, 

the automobile industry, and the transport of gases 

(pipelines)[22, 23, 24, 25]. A good understanding 

of this system operation is essential issue for 

increasing their performance and reducing their 

operating costs. In this case, one of the limits of 

using this system is determined by the stability 

limits, where it is well known that beyond these 

limits the operation system stability cannot be 

ensured. In order to take into account the 

characteristics of the studied gas compressor 

system and its operating conditions, it is necessary 

to establish a dynamic model that covers all the 

dynamic behaviors. This dynamic model presents 

an important element in the proposed diagnosis and 

detection approach, where the main objective is to 

obtain the best dynamical model based on previous 

works. Indeed, several recent researches have been 

dealt with the gas compressor systems modeling 

such as: the industrial centrifugal compressors 

modeling based of fuzzy logic approach [26], the 

centrifugal gas compressor parametric modeling 

based on system identification [27], the two shaft 

gas turbine modeling based on linearized 

model[28], the system simulation for dynamic 

centrifugal compressor model [29], and others [30, 

31, 32, 33]. 

According to the International Energy Agency, 

Algeria is ranked in the 10th position among the 

natural gas producers in 2015 with 2.3% of the total 

world production and in the 6th position among the 

natural gas exporters with 5.3% of the world total 

production. Recently with the emergence of new 

natural gas fields, Algeria is expected to increase its 

natural gas network production capacity by nearly 

35 billion cubic meters by 2020, this is guided by 
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the evolution of needs expressed by the global gas 

market and the emergence of new sources 

discovered by the Algerian company Sonatrach. 

Therefore, the development of the interconnection 

capacity of the gas transmission network is in 

function of gas compression stations installed in the 

hydrocarbon field, requires very complex 

equipment, distributed over several stations of gas 

compression along the pipeline, to distribute the gas 

to different users. The most suitable machines are 

gas centrifugal compressors, these machines are 

subject to several problems of operation instability, 

causing oscillations that can be dangerous for their 

mechanical strength causing a total or a partial 

degradation of such machines. 

The novelty of this work consists in proposing a 

new approach for faults detection in a centrifugal 

gas compressor to ensure its safety operation, its 

availability for production and to minimize its 

maintenance cost. This approach is applied to a 

BCL 505 centrifugal gas compressor used by 

Sonatrach in the Hassi R’Mel gas compressor 

station in the south of Algeria. 

The main contribution of this paper focuses on 

the development of a robust faults diagnosis and 

detection approach which aims to increase the 

system monitoring performance during the 

operating mode of the studied centrifugal gas 

compressor plant. This proposed approach is based 

on the combination of the two FDI diagnosis model 

approaches (based on the parametric identification 

model and on observer system), with the intelligent 

expert fuzzy type-2 system as shown in Fig. 1. 

The Kalman observer is used to estimate on 

real-time the filtered and unmeasured outputs Ŷ  

(the discharge pressure and the discharge 

temperature P2, T2 respectively) of the centrifugal 

gas compressor system based on the two actual 

measured inputs (the temperature and the pressure 

aspiration T1, P1 respectively)). It important to 

clarify that the Kalman observer presented in this 

paper is built based on the experimental data of the 

inputs (T1 and P1) and the outputs (T2 and P2) 

obtained by the installed sensors via the acquisition 

control system (ACS). The equivalent model 

(healthy or un-faulty model) is obtained from 

parametric system identification based on the 

extended simplified refined instrumental variable 

 (ESRIV) algorithm using experimental data [34]. 

This obtained optimal model is considered as a 

reference model which generates the reference 

outputs opY , where the difference between the 

estimated outputs Ŷ and the reference outputs opY  

presents the residues vector r. On the other side, an 

expert system is proposed and designed based on 

the type-2 fuzzy theory [35, 36], taking into 

account the faults detection threshold as proposed 

in [4]. This expert system receives the residues 

vector and generates the signature which provides 

the information about the fault occurrence. When a 

fault is occurred, it is important to estimate the 

remaining time before the studied system falls into 

failure, therefore a remaining time predictor based 

on the autoregressive integrated moving average 

(ARIMA) model is proposed in this paper to 

accomplish the whole proposed faults diagnosis and 

detection approach, where the main aim is to 

predict the remaining time starting from the instant 

of failure occurrence to the estimated final stop 

instant [37, 38]. 

 

2. HASSI R’MEL GAS FIELD 

 

Hassi R’Mel gas field is located approximately 

550 km south of Algiers (Algeria), at an altitude of 

760 m. This gas field covers an area of 3500 km2, 

70 km in the north-south direction and 50 km in the 

east-west direction. The landscape is composed of a 

vast rocky plateau, the climate is characterized by 

an average humidity of 19% in summer and 34% in 

winter. The temperature has a large range variation 

between 0◦C in winter to 45◦C in summer. The 

production of the Hassi R’Mel gas field can reach 

the capacity of 100 billion cubic meters of natural 

dry gas, 12 million tons of condensate gas and 3.5 

million tons of liquefied natural gas (LNG), The 

essential components of the LNG are expressed in 

Fig. 2, these components are presented following 

their molar fractions (blue color) and molecular 

weights (green color). 

 

 

 
Fig. 1. Proposed FDI approach 

 



DIAGNOSTYKA, Vol. 20, No. 2 (2019)  

Nail B, Kouzou A, Hafaifa A, Hadroug N, Puig V.: A robust fault diagnosis and forecasting approach based … 

 

60 

 

Fig. 2. Characteristics and components of LNG 

 

Hassi R’Mel gas field consists of three main 

exploitation zones, the north zone, the south zone 

and the center zones, each zone contains many 

pumping centrals, gas treatment factories, oil 

stations and gas compression stations, this last 

contains the centrifugal gas compressor which in 

the research purpose application of the proposed 

faults diagnosis and detection approach proposed in 

this paper. The main role of the gas compression 

stations is to constantly pressurize the dry gas to 

maintain its required pressure level. to regulate the 

gas pressure at the national level and the 

international market level. Each station contains 18 

turbo gas compressor (Centrifugal gas compressor 

driven by a gas turbine (GEMS5002C)) as shown in 

Fig. 3, each pair of turbo-compressor forms a 

compression line. The compression process is 

carried out through two stages, the low pressure 

stage and the high pressure stage, where a cooling 

system based on air coolers is used to regulate the 

temperature at the intermediary of the two stages. 

 

3.  CENTRIFUGAL GAS COMPRESSOR BCL 

505 SYSTEM 

 

Centrifugal compressors are used in many 

industrial sectors, such as the oil industry, the 

production of thermal and nuclear energy, 

aerospace propulsion, automotive, water 

distribution, etc. Indeed, a good understanding of 

the operation of these devices is essential to 

increase their performance and reduce their 

operating cost. In this case, one of the limits of use 

of these systems is determined by its stability 

limits, limits beyond which stable operation of 

systems is no longer ensured. The centrifugal gas 

compressor studied in this paper is the BCL 505 

type which is shown in Fig. 4, its characteristics are 

presented in appendix A Table 3. 

This compressor is constructed by Nuovo 

Pignone company and it is used in a gas 

compression heavy application such as in gas field 

production and gas network transportation, it is 

equipped with a control room computer-based 

where the DCS is a part of it which allows to take 

directly inputs / outputs measurements from the 

installed sensors. The main function of the studied 

centrifugal gas compressor in this paper, is to 

ensure the pressure rise of the continuous flow of 

gas passing through it based on kinetic energy. 

Where The increase of the gas pressure by a 

compressor is used to: 

✓ reach a level of gas pressure. 

✓ compensate the pressure losses related to the 

circulation of the gas flow in a gas network. 

The compressors can be classified according to 

their characteristics depending on the type of gas to 

be compressed such as, air compressors and gas 

compressors, and/or depending on the movement of 

the moving parts such as, linear or rotary motion, 

and/or depending on the operating principle such 

as, volumetric compressors and dynamic 

compressors which are the application area of the 

present paper. 

 

  
Fig.3.  Schematic block diagram of Turbo-compressor system 
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Fig. 4. Centrifugal gas compressor BCL 505 body, with real view in vertical joint plane 

 

4. PARAMETRIC MODELING OF DYNAMIC 

CENTRIFUGAL GAS COMPRESSOR BCL 

505 SYSTEM 

 

The single input single output (SISO) simplified 

refined instrumental variable (SRIV) algorithm is 

dedicated for solving the problem of parameters 

estimation of the output error (OE) model which is 

presented as follows [34]: 

  ( )
( )

   keku
zA

zB
ky +=

−

−

1

1

                   (1) 

To ensure the error minimization, the least squares 

cost function is used, it is expressed as follows: 

 
=

=
N

k

keJ
1

ˆ                              (2) 

Where  kê  is the estimated error function obtained 

directly by inspection of the model based on 

equation (1),  kê  can be expressed as follows: 

    ( )
( )

 ku
zA

zB
kyke

1

1

ˆ

ˆ
ˆ

−

−

−=                    (3) 

This error function contains the unknown 

parameters of the polynomials. Furthermore, it can 

be rewritten as follows: 

 
( )

( )   ( )   kuzBkyzA
zA

ke 11

1
ˆˆ

ˆ

1
ˆ −−

−
−=     (4) 

This equation can be furthermore simplified: 

  ( )   ( )  kuzBkyzAke *1*1 ˆˆˆ −− −=          (5) 

Where  ky* and  ku*  are the pre-filtered signals 

defined as follows: 

 
( )
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Equation (5) is a linear transfer function model, so 

that the normal Instrumental Variable (IV) methods 

can be used to estimate the parameters if it is 

possible to perform the pre-filtering operations in 

(6) and (7). The parameters of ( )1−zA  are 

axiomatically unknown and so this pre-filtering 

operation can be adaptive [34]. For MIMO system 

equation (1) can be rewritten as follows: 

  ( ) ( )    kekuzBzAky += −−− 111
         (8) 

Where,   

( )
( )





+++=

+++=

−−−

−−−

nb

nb

na

nap

zBzBBzB

zAzAIzA
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10

1

1

1

1

 

based on ( )1−zA  and ( )1−zB  expansions and 

equation (8), the following equation is obtained:  

( )      
     nbkuBkuBnakyA
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Equation  (9) can be rewritten using the Kronecker 

operator as: 
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Finally, the  error e[k] can be expressed as follows: 
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(11) 

 

Consequently, 

  ( )    ( )  kIcolkyIzAke T

p

T

p −= −− 11
  (12) 

The centrifugal gas compressor dynamical 

model can be obtained using the ESRIV algorithm, 

its main steps are summarized in appendix B. 

The BCL 505 centrifugal gas studied in this 

paper is a MIMO system with two inputs, the 

aspiration temperature T1 and the aspiration 

pressure P1 and two outputs, the discharge pressure 

P2, and the discharge temperature T2. The data 

used in this modeling is obtained experimentally on 

site, it contains N=1208 samples along a duration 

of 1208 hours, it is important to clarify that this 

experimental data is obtained via several tests to get 

the optimal data that are covering all possible 

dynamic behavior of this centrifugal gas 

compressor. 

The application of the proposed ESRIV 

algorithm based on experimental data allows to 

obtain the best model of the studied system, the 

algorithm converges totally only in five iterations 

following the proposed flowchart. Fig. 5 presents 

the validation criteria values function of the number 

of iterations. It is obvious that the best model is 

corresponding to the iteration number five where all 

the criteria reach their minima in comparison with 

the other iterations. 

 

 
 

Fig. 5. Validations criteria of the dynamic 

model of centrifugal gas compressor 
 

The convergence of the two outputs (the 

discharge pressure P2 / and the discharge 

temperature T2), that are obtained by the 

identification from the best selected model are 

compared with the real output measurements 

obtained experimentally on site, as shown in the 

following figures Fig. 6 and Fig. 7. 

Fig. 6. Output signal of experimental and modeled  

discharge pressure 
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Fig. 7: Output signal of experimental and 

modeled discharge temperature 

 

The centrifugal gas compressor dynamic model 

can be represented by a transfer function matrix in 

discrete-time ( )1−zG  which is containing five 

coefficient matrices 
22

51

A  in denominator, 

and five coefficient matrices 
22

51

B  in 

numerator.  

( ) ( )
( )1

1
1

−

−
− =
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zB
zG                      (13) 
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5. THE POWER AND THE EFFICIENCY OF 

THE STUDIED SYSTEM 

The performance evaluation of a compressor is 

generally not limited to a single operating point, it 

is characterized by a field as shown in Fig. 8 The 

compressor field shows the compression ratio as a 

function of the corrected flow at a constant 

corrected rotation speed, to whom the iso-efficiency 

contours are often superimposed. 

The limit at low flow rates is the pumping, 

which is characterized by the flow instability 

(sometimes until flow reversal), accompanied by 

pressure oscillations of great amplitude, which can 

eventually damage the machine. At high flows, the 

limit is the blockage, which corresponds to the 

appearance of a vibration phenomenon as sonic 

section in the floor. 

These are considered as global efficiencies 

because they only take into account the initial and 

final states of the transformation. On the other 

hand, they are also considered as energetic 

efficiencies because they are related to the total 

enthalpy changes h0 (they are called, for this reason, 

total-to-total efficiencies). These efficiencies can be 

used only if there is an exchange of energy. Using 

the same notations used previously in the (thermal) 

enthalpy diagrams, according to the second 

principle of thermodynamics as shows in Fig. 9, the 

total-to-total isentropic efficiencies of a compressor 

moving wheel can be defined as follows: 

0102

0102
.

hh

hh s
ip

−

−
=                             (14) 

 

Fig. 8. The centrifugal gas compressor system 

field 

 

Fig. 9. Diagram efficiency thermodynamics 

of the studied system 
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Figures Fig. 10 and Fig. 11 represents the 

produced power by the centrifugal gas compressor 

and its efficiency under the healthy operation state 

respectively, where the variation in the produced 

power (increase/decrease) depends on the market 

demand. 

 

Fig .10. The hourly evolution of the power of 

the centrifugal gas compressor system 

 

Fig. 11.The hourly evolution of the efficiency 

of centrifugal gas compressor system 

 

6. OUTPUTS ESTIMATION BASED ON 

KALMAN FILTER OBSERVER 

 

The Kalman filter is a set of mathematical 

equations which provides an efficient recursive 

computational algorithm to ensure the estimation of 

dynamic systems outputs states, in a way to 

minimize the mean of the squared error between the 

estimated output values and the real or the 

measured outputs. This filter is very useful in 

several domains: robotic motion planning, signal 

processing and econometrics. It can achieve the 

estimations of the past, the present, and even the 

future states. the last estimation which is dedicated 

to the future states is the main target of the work 

presented in this paper. 

The dynamic model of the centrifugal gas 

compressor presented in equation (15), can be 

written under the block observable state space (SS) 

representation as follows : 

( ) ( ) ( )

( ) ( )



=

+=+

kCXkY

kBUkAXkX 1
            (15) 

Where, 
1010A  is the system matrix, 

210B is the controllability matrix, 
102C  

is the observability matrix, 
110X  is the state 

vector,   121,1 =
T

TPU  is the input vector 

and   122,2 =
T

TPY  is the output vector. 

The Kalman Filter observer algorithm is used to 

estimate the unmeasured states and the two filtered 

outputs 
12ˆ Y  of the centrifugal gas 

compressor, the discharge pressure 
2P̂ and the 

discharge temperature 2T̂ respectively, The 

algorithm steps of the Kalman filter are presented 

in [6]: 

From these results, it can be concluded that the 

proposed Kalman filer allows to obtained an 

accurate estimated output Ŷ  for the discharge 

pressure 2P  and the discharge temperature 2T  in 

comparison with the experimental measured 

outputs Y  . Based on the zoom zones presented in 

Fig. 12 and Fig. 13, it can be said that the residues 

presenting the deviation between the two outputs 

respectively are neglected and the designed Kalman 

filter can be an adequate observer for the 

applications presented in this paper. This observer 

is used as essential and important part of the 

proposed faults diagnosis and detection approach 

which is applied to the centrifugal gas compressor 

presented in this paper. 

 

7. PRELIMINARY CONCEPTS ABOUT 

TYPE-2 FUZZY LOGIC  

  

Initially, the concept of the fuzzy type-2 set was 

introduced by the founder of the fuzzy logic Lot€ 

Zadeh [34, 35] as an extension of the concept of the 

fuzzy type-1 set. .e fuzzy type-2 set is characterized 

by a fuzzy membership function, that is, the degree 

of belonging of each element of the set is itself a 

fuzzy set in [0,1]. Such sets are advisable in the 

case where there is an uncertainty at the level of the 

value of the membership itself. .e uncertainty can 

be either in the form of the membership function or 

in one of its parameters. .e transition from an 

ordinary set to a fuzzy set is the direct consequence 

of the indeterminism of the value belonging to an 

element by 0 or 1. Similarly, when the functions of 

an element belonging to fuzzy numbers cannot be 

determined in real numbers within [0,1], then the 

fuzzy sets type-2 is used. For this purpose, the 

fuzzy sets type-1 can be considered as an 

approximation of the €rst order of uncertainty and 

the fuzzy sets type-2 as a second-order 

approximation. 
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Fig. 12. Observed and experimental discharge temperature, and the error between them 

 
Fig. 13. Observed and experimental discharge pressure, and the error between them 

 

Depending on the form of primary membership, 

there are many types of fuzzy sets type-2, among 

them: triangular, interval, gaussian, and the 

gaussian 2 which is used in the fuzzy type-2 system 

faults detection in this paper. 

The structure of a fuzzy type-2 system is 

represented in Fig. 14, it is similar to fuzzy type-1. 

whereas the €.h block appears in the output 

processing is of the reduction type. 

 

 
 

Fig. 14. The structure of the type-2 Fuzzy Logic System.

  

The difference between the rules of FL and FL-

2, reside only in the nature of the membership 

functions. Therefore, the structure of the rules in the 

case of FL-2 will remain exactly the same as that of 

FL. The only difference is that some (or all) 

membership functions will be of FL-2. therefore, 

the jth rule of a FL-2 system will have the following 

form [39, 35, 36]:  

j

j

pp

jj

GisyThen

FisxandFisxandFisxIf

~

~~~
2211 

 (16) 

Where,  pp XxXxXx  ,,, 2211    are the 

outputs, the 
jF1  are the sets of premises such as 

yypi = ,,,2,1   is the output, and the 

jG
~

are the sets of consequences. 
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8. THE PROPOSED FDI SETUP FOR A 

CENTRIFUGAL GAS COMPRESSOR 

PLANT 

  

The faults diagnosis and detection approach 

proposed in this research paper takes into 

consideration all the phases of the operating cycle 

of the centrifugal gas compressor system under 

study, such as the evolution of the pressure and the 

temperature of the gas in the centrifugal gas 

compressor, the evolution of mass and volume 

flows as function of the gas pressure and 

temperature. In the same time ,it takes into account 

the power absorbed as a function of the gas, and 

other operating conditions that allow to obtain 

precise information about the dynamic behavior 

and to maximize the availability of this system. In 

this proposed diagnostic system a hybrid between 

the mathematical theory of estimation based on the 

stochastic kalman filter observer, and the artificial 

intelligence algorithms based on a type-2 fuzzy 

system. Fig. 15, shows the proposed faults 

diagnosis and detection approach details studied 

presented in this paper. 

On the other side, it is well known that the 

industrial systems have complex behaviors, and 

they are characterized by uncertain variables or 

parameters as a function of time, this constraint 

complicates their control task and implies many 

difficulties in achieving the good performances of 

such systems. For this purpose, this work proposes 

a real-time faults diagnosis and detection approach, 

where the main aim is to detect and to localize the 

defective components in the studied centrifugal gas 

compressor system. 

This proposed approach is based on the 

calculation of the residues r(k) following equation 

(17) , which presents the errors between the optimal 

Yop and the observed Yˆ outputs respectively. On 

the other side, the residues are the inputs for the 

fuzzy type-2 system, when the system is under 

healthy operating state, these residues have 

generally a null average and a determined variance. 

In practice, the residues do not have exactly zero 

value in the absence of faults as shown in the 

previous figures Fig. 12 and Fig. 13, because the 

obtained model of the studied system in this paper 

does not take into account all the internal and 

external parameters, which means that only the 

preponderant parameters are taken into account and 

that certain simplification has been considered. On 

the other side the measurements performed on the 

system are often affected by measurement noise. 

The residues are expressed as follows: 

( ) ( ) ( )kYkYkr op
ˆ−=                    (17) 

Where, ( ) ( ) ( )  12, =
T

Tp krkrkr . 

In this context, an elementary detection method 

consists in comparing the value of the obtained 

residues with a predefined threshold (modeling 

errors function). An alarm is triggered each time 

this threshold is crossed: 

( ) ( )

( ) ( )





=

0

0

kdkr

kdkr






               (18) 

Where, d(.) presents the vector of the faults. 
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Fig. 15. Real-time faults detection diagnosis 

configuration for centrifugal gas compressor. 

 

8.1. Fault detection and isolation (FDI) 

The purpose of the detection procedure is to 

determine the instant of fault occurrence. To 

achieve this objective, the residues obtained by 

comparing the system optimal model outputs with 

the system estimated outputs. 

In the presence of faults, the evolutions of the 

discharge temperature T2 and the discharge 

pressure P2 during the time interval of 7 × 104 

minutes are registered via the DCS, where a rising 

vibration in the discharge temperature T2, and in 

the discharge pressure P2 are remarked, comparison 

between the outputs dynamic behavior of the 

centrifugal gas compressor with and without faults 

are shown in Fig. 16 and Fig. 17. 

After the residues generation step, the next task 

is the detection of faults based on the obtained 

residues signals. In the present work, to ensure a 
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robust faults diagnosis and defection, the statistical 

process control (SPC) is integrated in the 

monitoring of centrifugal gas compressor. This 

process control was introduced by Walter Shewhart 

[4], and it occupies a prominent place among the 

statistical quality control (SQC) tools. It includes a 

set of statistical methods to monitor and improve a 

production process. 

 

Fig. 16. The discharge pressure P2 with and without 

faults 

 

Fig. 17. The discharge temperature T2 with and without 

faults 

The Shewhart graph is able to control the 

distribution of deviations instead of trying to 

control each individual deviation. The horizontal 

axis presents the time and the vertical axis presents 

the quality scale. It also contains three horizontal 

lines: The middle line presents the reference line of 

the normal operation mode output, the upper line is 

the upper specification limit (USL) of the control 

quality, and the lowest line is the lower 

specification limit (LSL) of the minimum control 

quality. When decisions are confined between the 

upper and lower limits, the deviation is acceptable 

and the centrifugal gas is operating in normal 

conditions. The following Table 1 presents the 

average value m, standard deviation s, and the 

(USL,LSL) of the two outputs signal that are 

calculated based on Shewhart algorithm [4]. 

Fig. 18 and Fig. 19, show the variation of the 

generated residues of the discharge pressure and the 

discharge temperature respectively, that are 

included within the upper and lower detection faults 

lines (USL,LSL) of Shewhart graph for the two 

outputs of the studied centrifugal gas compressor 

system. 

 

Table.1. The threshold faults detection 

 

 

Fig. 18. The detection faults of (P2) with respect to a 

threshold 

 

When the residues exceed the upper and lower 

allowed limits (threshold), the system operates with 

faults that may not appear externally at the 

beginning. Therefore, the problem which needs to 

be solved is to find an efficient way which allows to 

indicate immediately the faults when they are 

occurred. To solve this problem a type-2 fuzzy 

logic system is suggested as an expert model in 

order to detect and identify the type of occurring 

faults. In this case many tests have been done to 

select the best fuzzy sets type-2 that gives a robust 

performance and good results, in this work the 

gaussian 2 membership function was chosen as the 

best one.  

Fig. 20, shows the expert model detection of the 

discharge pressure P2 which contains three 

membership functions of type gaussian 2, that are 

the small, the medium, and the large with identical 

intervals between the upper- and lower-lines faults 

detection presented in Table 1, if there are faults, 

the expert model indicates ”1”. Fig. 21, shows the 

Error m s (USL,LSL) 

ET2 -0.0015 3.3063e-8 ±7.2755 

EP2 0.0014 3.7597e-9 ±21.631 
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detection expert model of the discharge temperature 

T2, it differs from the first one only by the faults 

detection upper and lower lines (threshold). 

 

 

Fig. 19. The detection faults of (T2) with respect to a 

threshold 

 

 

Fig. 20. Type-2 fuzzy sets of discharge pressure P2 expert 

model faults detection 

 

Fig. 21.Type-2 fuzzy sets of discharge temperature T2 

expert model faults detection 

20 faults are detected related to the discharge 

pressure output P2, 12 faults were accurate during 

the first 12 hours and 8 faults during the time 

interval from 968 hours to 1142 hours, regarding 

the discharge temperature output T2, around 400 

faults are detected, these faults have been occurred 

during almost the operating time along the interval 

time from 1 hour to 1208 hours. 

The detection faults of the discharge pressure 

and the discharge temperature respectively are 

shown in Fig. 22 and Fig. 23 based on 2D thermal 

card, where the red color symbolizes the detected 

fault and each fault is represented by stem. 

 

 
 

Fig. 22. The fault evaluation of (P2) gas compressor 

system examined 

 
Fig. 23. The fault evaluation of (T2) gas compressor 

system examined 

After the faults detection based on the output 

signals of the centrifugal gas compressor T2 and P2 

through the proposed faults detection setup, a 

maintenance schedule is required for the system to 

identify the nature of the faults, the resulting 

damages and the affected components, where the 

main aim is to ensure the required change and 

reparation in the system to restart the system 

operating mode again. 

During the experimental study, the system was 

completely opened for performing the maintenance, 

checking the inside body of the studied system and 

for the validation of the proposed faults diagnosis 

and detection presented in this paper and its 

accuracy for the determination and assessment of 

the fault levels. Indeed, after careful examination, 

the damage observed and realized in the 

components of the BCL 505 gas compressor are 

presented in the following figures: 

✓ scratch on the blades of the impeller1, as shown 

in Fig. 24. 



DIAGNOSTYKA, Vol. 20, No. 2 (2019)  

Nail B, Kouzou A, Hafaifa A, Hadroug N, Puig V.: A robust fault diagnosis and forecasting approach based … 

 

69 

✓ light streaks at the spacers level, as shown in 

Fig. 25. 

✓ o-ring joints defects, as shown in Fig. 26. 

 

 

Fig. 24. The status of scratch on the blades of the 

impeller1. 

 

8.2. Forecasting the remaining time 

In this section, it is assumed that the centrifugal 

gas compressor is operating under faulty mode. In 

this case, the proposed approach of faults diagnosis 

and detection needs to be improved. It means that 

depending on the level and quality of faults, the 

safety time for which the studied system can 

continue its operation mode before it falls 

completely in failure and reaches the operating 

interruption. In order to achieve this important 

required task, the ARIMA model is used to know 

the evolution of both temperature and pressure with 

respect to time, to know when the centrifugal gas 

compressor be out of control (damage). 

The ARIMA model and the interpolation 

algorithm techniques [37, 38] are highly used in 

speech signal processing and in statistics (time 

series), as well as in the deterministic and random 

case, which will be the only one considered in this 

work. The ARIMA model is used to predict the 

value of a discrete-time signal at a defined instant 

as a function of its past or all its future, the main 

aim of implementation of this algorithm is to 

predict the time at which the system reaches the 

stage of damage or danger. 

After viewing and identifying the affected parts 

in the centrifugal gas compressor system, the below 

Table 2 confirm the results obtained from the 

proposed setup for the faults detection. In 

comparison with the constructor operating system 

documents, it can be said that the obtained results 

are within the norms given by the constructor. 

From the results shown in Figures Figs. 27 to 

29, for the discharge temperature T2 output, the 

time between the alarm warning and the time of the 

system to be out of control is 60 hours. For the 

discharge pressure P2 and based on Figures. Figs. 

30 to 32, the time between the alarm warning and 

the time of the system to be out of control is 75 

hours. 

 

 
Fig. 25. The status of light streaks at the spacers level and after reparation. 

 

 
Fig. 26: The status of O-ring joints defective. 
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Table.2. Faults identification and classification 

Faults Outputs Signal Faults identification 

F1 

P2 

 

• Distortions and 

incision in the level 

of blades 
T2 

 

F2 

P2 

 • O-ring joints 

defective 

• Friction between 

the blades and 

wheel-space 
T2 

 

F3 

P2 

 

• looseness in screws 

• O-ring joints 

defective T2 

 

 

           "        " : Rise               "       " : Full 

 

These results mean that the safety time for the 

system to operate under the detected faults until 

falling into danger or damage is 60 hours, beyond 

this time the safety of the whole system is not 

guaranteed. Thus, through these predictions, the 

system damages and its maintenance time loss can 

be avoided, furthermore, the system can be isolated 

in time from critical danger. It can be said from the 

obtained results that the proposed and improved 

faults diagnosis and detection approach in this 

paper can improve the operation of centrifugal gas 

compressor system and guarantee its production 

continuity within the whole installation. 

 
Fig. 27. Forecasting time level danger of T2 

 

 
Fig. 28. The quantile-quantile plot (QQ-plot) and kernel 

density estimate of T2 

 

 
Fig. 29. Sample/and partial autocorrelation functions 

of T2 

 
Fig. 30. Forecasting time level danger of P2 
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Fig. 31. The quantile-quantile plot (QQ-plot) and kernel 

density estimate of P2 

 

 
Fig. 32. Sample/and partial autocorrelation functions  

of P2 

 

9. ECONOMIC STUDY 

 

9.1. Reparation costs 

During the first phase, within the time interval 

from 0 to 1000 hours, the centrifugal gas 

compressor operates in healthy operating mode, 

consequently the value of the faults detection 

system indicates ”0” Fig. 33. During the second 

phase, along the time interval from 1000 hours to 

2209 hours, the centrifugal gas compressor operates 

under intermittent faulty state. Hence, the faults 

detection system indicates ”1” as the measured 

signal for faults detection pass the threshold 

aforementioned Fig. 33. It is important to clarify 

that the faults occurrence in percentage rises to 

38.9776% at the end of the second phase, this 

percentage is calculated based on the number of 

zeros and ones obtained by the faults detection 

system during the second phase as shown in Fig. 

33. this percentage value means that the 

performances of the centrifugal gas compressor are 

decreased, due to the increase of the temperature T2 

and the decrease of the output pressure P2 as shown 

in Fig. 33 Consequently, at the end of the second 

phase, the machine is stopped to perform the 

maintenance of the whole system, not only the 

studied compressor. This operation is performed 

during the time of 744 hours (31 days) where the 

main aim is to achieve all the required reparations. 

On the other side, the total repair cost was 

estimated at 357,000€(this maintenance is 

performed to all the equipment without the 

intervention of the manufacturer or an external 

company). It can be seen clearly that the reparation 

cost increases as the reparation time increase as 

shown in Fig. 33. After the reparation, the 

centrifugal gas compressor is restarted up and 

connected to the installation to work with a fully 

capacity again. 

 

9.2. Benefits 

When the intervention of reparation is 

performed at the time where the percentage of the 

fault occurrence reaches 10% based on the 

proposed diagnostic and faults detection system, the 

cost of reparation will be approximately 96,267€, 

furthermore the reparation period will take 

approximately 204 hours (8 days and a half day). In 

this case it can be said that the proposed diagnostic 

system for early faults detection is economically 

efficient, where the reparation intervention of 

defects will be done in time, more faster and with 

reduced financial burdens. 

 

10. CONCLUSION 

 

A robust faults diagnosis and detection 

approach is proposed in this paper and applied on 

the centrifugal gas compressor BCL 505 based on 

experimental data obtained on site from the 

measurement of the real time acquisition control 

system (ACS). The main purpose of the proposed 

approach is to improve the energy efficiency by 

improving the operating mode and the monitoring 

performance of the BCL 505 centrifugal gas 

compressor used in gas transportation station and 

studied in this paper. 

This proposed faults diagnosis and detection 

approach is a combination of the two faults 

detection and isolation (FDI) approaches that are 

mainly based on the optimal identified healthy 

parametric equivalent model, the Kalman 

observation system, and the intelligent expert fuzzy 

type-2 system. Whereas the Kalman filer is used to 

obtain the estimation of the output signals and to 

ensure the robustness against the eventual 

disturbances and noise contained in the measured 

output signals from the DCS. The output of the 

optimal identified parametric model and the 

estimated output based on real time inputs are used 

to generate the current residues on real time. In this 

paper this residues are used through the expert 
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Fig. 33. The diagnosis approach impact on the financial cost

system which was designed based on the type-2 

fuzzy logic to ensure the faults diagnosis and 

detection in real time, this expert system achieves 

this main task with the help of the calculated and 

defined limits of the threshold defining the degree 

of the faults and its level of damage and risk on the 

studied centrifugal gas compressor BCL 505 

system. Furthermore, the prediction of the 

remaining time before the failure of the studied 

machine is investigate based on the autoregressive 

integrated moving average (ARIMA) model, where 

the main aim is to avoid the an expected failure and 

to provide an accurate maintenance schedule. It can 

be concluded that the proposed approach of faults 

diagnosis and detection which has been applied on 

the centrifugal gas compressor BCL 505 posses 

several advantage such as the decrease of the 

reparation time, avoiding the system form an 

expected operating risks and reducing the 

maintenance costs. These advantages affects 

positively the energy efficiency of the whole 

studied system and therefore increase the stability 

of the production, on the operation mode of the 

studied system and improves the overall studied 

system reliability and its robustness against the 

eventual faults. 

Finally, it can be said that the proposed faults 

diagnosis and detection approach investigated in 

this paper is a promising approach which can be 

applied for different heavy industrial systems to 

improve their efficiency, especially in the area of 

petrol and oil industrial applications such as the gas 

turbine, the turbo-alternator, the turbo gas 

compressor…etc, where the main aim is to improve 

their dynamic behaviours, their operation mode, 

their reliability, their economics and their 

efficiency. 

- The memberships functions of the fuzzy type 2 

expert-system may be are not the optimal ones, we 

can use the PSO or Genetic Algorithms to select the 

optimal ones, as further studies. 

2- The modeling of the studied system can be 

obtained based on Artificial Neural Network 

(ANN) or ANFIS algorithms for obtained the 

model that exactly represents all the dynamics 

behavior of the studied system. 

 

APPENDIX 

 
Table 3: General performance of centrifugal gas 

compressor BCL 505 

Stages                                               1-5 

Maximum discharge pressure    123 kg/cm2 

Maximum discharge temperature    121 °C 

Efficiently  -%                                 73 % 

Speed                                      3000 to 20000 rpm 

Compressed gas                                 LNG 

 

The process and measurement noise covariance 

matrices Q and R, respectively have been selected 

as: Q=diag([10 20 30 40 50 60 70 80 90 100]) 

R=eye(2) 
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